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LETTER TO THE EDITOR 

Three-dimensional analytical periodic solutions of the Laplace 
equation 

D Ouroushev 
University of Sofia, Faculty of Physics, Department of Solid State Physics, Boulevard A 
Ivanov 5, Sofia 1126, Bulgaria 

Received 17 May 1985 

Abstract. A method is proposed, by which three-dimensional periodic analytical solutions 
of the Laplace equation can be found. The solutions obtained describe the electrostatic 
potential in a three-dimensional space lattice of point charges with a certain symmetry. 

The problem of finding the three-dimensional solution of the Laplace equation 

A J / = O  (1) 

is usually solved by separating the variables. By this method a general solution can 
be obtained, which has the form (Morse et a1 1953) 

e"', t2  = r2 + s2. (2) J/ = e*irx e*isy 

As can be seen from (2) this solution is periodic in the x and y directions and 
exponentially decreasing or increasing in the z direction. It should be mentioned here 
that the correlation between the constants r, s and t is always such that the coefficient 
of z is real. Consequently the method of separation of the variables cannot be used 
to obtain a solution periodic in three dimensions. 

Here a method will be proposed by which a three-dimensional periodic solution 
of the Laplace equation can be found. Let us make the following substitution in 
equation ( 1 )  

$ = 4 q  Arth[u,(x)u,(Y)w,(z)+ U2(X)~2(Y)W2(Z)l (3) 
where ui, vi, wi ( i  = 1,2) are Jacobi elliptic functions which satisfy the following non- 
linear ordinary differential equations (Janke et a1 1960) 

(dui/dx)2 = A;u:+ B;uf+ C; 

(dui/dy)2 = Aru:+ Bruf+ Cr i = l , 2  (4) 
(d wi/dz)2 = Af w:+ Bf w f  + Cf. 

Substituting (4) into equation (1) we obtain 

(A;u:+A{u:+ A;w:)2a + (A;u:+ A$u:+A;w:)2p 

-2(A;u:+ A{u: + A ; ~ : ) ~ ( a p '  + P2a) + ( B ; +  B { +  B;)(a  + a3 + ap2) 

+ ( B ; +  B:+ ~ ; ) ( p  + p 3 +  p2.) +2(a + p )  
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x ( c ; u : w : +  c;u:w:+ c:u:w:+ c:u:w:+ c;u:u:+  c;u:u:, 

+ 4(a + p ) (  u;u;ul WIU2W2+ u;u;u1u2w1 w2 + w ;  w;uIu2u1u2) = 0. ( 5 )  

Here the prime denotes a derivative by the corresponding variable; Q and /3 are 
correspondingly 

a = U l U l W l  p = u2u2w2. (6) 

Equation ( 5 )  can be further simplified by using some concrete properties of the Jacobi 
elliptic functions. Let us assume that uiuiwi are some of the three main Jacobi elliptic 
functions sn(x, k), cn(x, k), dn(x, k) (Janke et a1 1960). In this case 

w ; w ; =  w,w2(Df+ D ; ) + A f w : w , ~ ~ + A ; w ~ w ~ w ~ .  

Of course the relations (7) are valid if the pairs of functions u,u2; u1u2;  w1w2 depend 
on the same modal k, k, k, respectively. In ( 7 )  Ofy", 0;"' are constants, which can 
be determined by making a concrete choice for the functions uiuiwi; they can be 
expressed by the coefficients By"'. 

It must be underlined that for every combination of main elliptic functions (sn cn; 
sn dn; cn dn) relations (7) are valid. 

Using (7) equation ( 5 )  can be simplified: 

(B;+B:+Bf ) (a+a3)+(B;+ B : + B ; ) ( / 3 + P 3 )  

+ [ 2 ( 0 ; +  D;)  +2(  D:+ D:)  +2(  D f  + 0;) - B; - B: - Bf] .P2 

+ [ 2 ( 0 ;  + D;)  + 2( D:+ D:)  +2(  D f  + D;)  - B; - B:-- B;] /~'cY 

+ [ A ; ~ : + A : u : + A ~ w : +  c;u:w:+ c;u:w:+ C : U : W :  

+ C;U:W;+ c;u:u:+ C ; U : W : ] Z ~  +[A;u:+A;u:  

+ c;u:u:+  c;u:v:12p = 0.  

+A;w:+ Cfu:w:+ C;u:w:+ C:u:wi+ C,Yu:w: 

(8) 

Consequently the problem of solving the three-dimensional Laplace equation is reduced 
to that of solving a system of algebraic equations. The first three equations of this 
system, as follows from (8), are 

B; + B: + Bf = 0 

B; + B;+ B; = 0 (9) 

D ; + D ; + D { + D ; + D f + D ; = O .  

Moreover, the coefficients of 2a and 2 p  in (8) must be equal to zero: 
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Equations (10) lead to a further ten relations between the coefficients A:ArA:C:CrC: 
( i  = 1,2).  The exact form of these equations can be given after a concrete choice of 
the functions u,u,w,. Solving the system of algebraic equations determined by (9) and 
(10) we can in principle find a three-dimensional periodic solution of the Laplace 
equation, expressed in Jacobi elliptic functions. 

Let us now do a concrete choice for the functions u,u,w, setting 

u1 = ay cn(lx, k,) u2 = a; sn( Zx, k,) 

u1 = 4 cn(my, 5 )  u2 = a i  sn( my, k,) ( 1 1 )  

w1 = a: cn( nz, k, )  w2 = a; dn( nz, k z ) .  

As can be seen from ( 1 1 )  18 indeterminated. constants A:y’B:yzCfyz reduce to 12 due 
to the fact, that for every pair of functions U,, U,, w ,  ( i  = 1,2)  the coefficients before 
xyz, as the modals k,, k ,  k, must be the same, because in (9) and (10) these functions 
must be combinate. 

Due to the fact that the function u,u,w, occurs in the solution only in the combina- 
tions u,uIw, ,  u2u2w2, the coefficients a:, ay, a : ,  a; ,  a i ,  a ;  can be reduced to two: 

A = afara;  B = a;a;a;. (12) 

In this case the system of equations (9) and (10) reduces to eight equations for the 
eight coefficients A, B, k,, k, k,, 1, m, n. Solving this system we obtain 

A = B = 1  1 2 +  m2 = n 2  k: = k: = 1 - ki. (13) 

Consequently the function 

(I/ = 4q Arth[cn( lx, k )  cn( my, k) cn( nz, k ’ )  + sn( Ix, k) sn( my, k )  dn( nz, k’)] (14) 

where k2 = 1 - kr2, is a three-dimensional periodic solution of the Laplace equation. 
The solution obtained is periodic in the x, y and z direction with respective periods 

(15 )  

where K ( k )  and K(k’) are the full elliptic integrals of the first kind determining the 
periods of the elliptic functions. 

It must be mentioned that the obtained function (14) possesses singularities at the 
points in which the argument of the function Arth is equal to *l .  These singularities 
can be interpreted according to the physical meaning of the Laplace equation. This 
equation describes the electrostatic potential in a system of charges in the areas where 
the space charge density is zero. 

The presence of singularities in the solution of the Laplace equation is usually 
connected with the existence of a point charge in these points (Jackson 1962). Setting 
the constant q in (3) equal to the absolute value of these point charges it can be said 
that a solution of this type describes the electrostatic potential in a system of point 
charges distributed periodically and forming a space lattice. 

For the concrete solution (14) this space lattice is given in figure 1 .  As can be seen 
from the figure, this is a space lattice from the rhomboid system with C primitive cell. 

Consequently the solution obtained is an analytical expression for the electrostatic 
potential in the crystal-like structure of point charges with the aforementioned sym- 
metry. 

Here it must be mentioned that the proposed method gives us a possibility of 
finding solutions with other symmetry, which are also expressed in Jacobi elliptic 

T, = 4K (k)/  1 T, = 4K ( k )/ m T, = 4K (k’)/ n 
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Figure 1. The space lattice of point charges described by the solution (14) of the Laplace 
equation. Open circles, positive point charges; full circles, negative point charges. 

functions. Consequently the proposed method makes it possible to find an analytical 
expression for the electrostatic potential in a three-dimensional periodic structure of 
point charges or we obtain an analytical expression for the crystal field in a certain 
type of ionic crystal with corresponding symmetry. 
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